Abstract

Single-molecule spintronics investigates electron transport through magnetic molecules that have an internal spin degree of freedom. To understand and control these individual molecules it is important to read their spin state. For unpaired spins, the Kondo effect has been observed as a low-temperature anomaly at small voltages. Here, we show that a coupled spin pair in a single magnetic molecule can be detected and that a bias voltage can be used to switch between two states of the molecule. In particular, we use the mechanically controlled break-junction technique to measure electronic transport through a single-molecule junction containing two coupled spin centres that are confined on two Co(2+) ions. Spin-orbit configuration interaction methods are used to calculate the combined spin system, where the ground state is found to be a pseudo-singlet and the first excitations behave as a pseudo-triplet. Experimentally, these states can be assigned to the absence and occurrence of a Kondo-like zero-bias anomaly in the low-temperature conductance data, respectively. By applying finite bias, we can repeatedly switch between the pseudo-singlet state and the pseudo-triplet state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.