Abstract
This paper presents switching model construction and stability analysis for a class of nonlinear systems. A switching fuzzy model newly developed in this paper is employed to represent the dynamics of a nonlinear system. A key feature of the switching fuzzy model construction is to find the so-called minimum distance sector by solving a nonlinear optimization problem. Next, we discuss the stability of a switching fuzzy model. To take advantage of the switching fuzzy model, we introduce a piecewise Lyapunov function that mirrors its structure. We show that the piecewise Lyapunov function approach provides less conservative results for the typical quadratic Lyapunov function approach. Illustrative examples demonstrate the utility of the switching model construction and the stability analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Computational Intelligence and Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.