Abstract

The kinetics of the ferroelectric lock-in transition in potassium selenate (K2SeO4) was studied on a millisecond timescale using high-resolution γ-ray diffraction. A large change of the line width and wavevector of the first order satellite is observed during the switching process. This is attributed to a loss of long-range order under the influence of the electric field. In addition, the incommensurate phase is stabilized by the pulsed field and the transition to the pure commensurate phase is shifted to lower temperatures. Strains that may build up during the rapid switching process are supposed to be the reason for this behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call