Abstract
We have studied the acousto-optic effect in polaritonic nanofibers made by embedding a cylindrical polaritonic nanowire within a photonic crystal. Here the nanowire consists of either a phonon-polaritonic or an exciton-polaritonic material. The nanowire is doped with ensemble of noninteracting quantum dots. Quantum dots interact with the nanofiber via the exciton-polariton interaction. It is found that for the certain acoustic strain intensity the nanofiber has a localized-to-delocalized polariton transition similar to the metal-to-insulator transitions in doped semiconductors. It is also found that nanofiber has a transparent state due to the exciton-bound polariton coupling. The transparent state can be switched ON or OFF by the external acoustic strain intensity. These are very useful discoveries that can be used to fabricate new types of polaritonic nanoswitches and nanosensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.