Abstract

Flowering time control in plants is a major limiting factor on the range of species. Day length, perceived via the photoperiodic pathway, is a critical factor for the induction of flowering. The module of GIGANTEA (GI)-CONSTANS (CO)-FLOWERING LOCUS T in the long day (LD) plant Arabidopsis is conserved in diverse plant species including the short day (SD) plant rice, where this module comprises OsGI-Heading date 1 (Hd1)-Heading date 3a. Hd1, the rice ortholog of Arabidopsis CO, has dual functions in the regulation of flowering time, promoting flowering in SD conditions and delaying it in LD conditions. We herein show genetic interactions among three LD repressor genes: Hd1, Grain number, plant height and heading date 7 (Ghd7), and Oryza sativa Pseudo-Response Regulator37 (OsPRR37). Genetic analyses, including segregation analyses, evaluations of near isogenic lines, and transformation for flowering time demonstrated that Hd1 promoted flowering time in inductive SD and non-inductive LD conditions in genetic condition of loss-of-function Ghd7 and OsPRR37 (ghd7osprr37) in rice. Functional Ghd7 or OsPRR37 may switch the genetic effects of Hd1 from the promotion to the delay of flowering times in LD conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.