Abstract

Previous research on anaerobic digestion of food waste has primarily focused on either wet or dry anaerobic digestion (AD), typically accompanied by continuous mechanical mixing. However, the necessary dilution rates and the extent of mixing required have yet to be addressed. In this study, we investigated switching from wet to dry AD of food waste without mechanical mixing, employing different dilution rates. Lab-scale anaerobic reactors were operated with dilution rates of 10, 5, and 2 times during Phases I (0–56 days), II (57–121 days), and III (122–209 days), respectively. The methane production rates were not significantly different (p > 0.05) across the dilution rates decreased from 10 to 2 times. Remarkably, the methane production in the anaerobic reactors exhibited fluctuations due to variations in feeding, with the methane production rate ranging from 2.0 to 2.7 g CH4-COD/(L d), without mechanical mixing, as the solids content transitioned from wet to near-dry digestion conditions (15 %, food waste). The distribution of sludge volatile solids concentrations remained uniform in the reactor, even at high solids concentrations of up to 15 %. A dynamic microbial community response to changes in dilution rates, with a shift from aceticlastic to hydrogenotrophic methanogenesis pathways. Syntrophic acetate oxidization bacteria (the genus Syner-01 (4.2–8.9 %) and f_Synergistaceae (3.6–4.2 %)) were highly enriched as switching from wet AD to dry AD. The study's findings provide crucial operational insights for anaerobic food waste treatment, potentially resulting in decreased water usage and operational costs, particularly in scenarios with low dilution rates and without mechanical mixing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call