Abstract

The alpha/beta hydrolase superfamily contains mainly esterases, which catalyze hydrolysis, but also includes hydroxynitrile lyases, which catalyze addition of cyanide to aldehydes, a carbon-carbon bond formation. Here, we convert a plant esterase, SABP2, into a hydroxynitrile lyase using just two amino acid substitutions. Variant SABP2-G12T-M239K lost the ability to catalyze ester hydrolysis (<0.9 mU/mg) and gained the ability to catalyze the release of cyanide from mandelonitrile (20 mU/mg, k(cat)/K(M) = 70 min(-1)M(-1)). This variant also catalyzed the reverse reaction, formation of mandelonitrile with low enantioselectivity: 20% ee (S), E = 1.5. The specificity constant for the lysis of mandelontrile is 13,000-fold faster than the uncatalyzed reaction and only 1300-fold less efficient (k(cat/)K(M)) than hydroxynitrile lyase from rubber tree.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call