Abstract

This study investigated effective operating method of enhanced electrokinetic-Fenton (EK-Fenton) process with anionic surfactant to remediate contaminated iron-rich clayey soil with phenanthrene, which had soil properties being frequently in contaminated sites. Introduction of 30 mM SDS as H 2O 2 stabilizer improved not only H 2O 2 stability but also degradation of phenanthrene compared to experiment without SDS. However, electrical potential drop in regions near cathode terminated electro-osmotic flow, and then phenanthrene in region near cathode kept initial concentration before switching of the electrodes polarities and introduction direction of reagents. After the polarity of the electrodes and introduction direction of reagents were switched, electro-osmotic flow was re-generated with re-distribution of electrical potential and electrical current. Furthermore, after switching electrode, decrease of iron concentration and pH in the soil specimen near cathode before switching electrode generated decrease of H 2O 2 decomposition rate. Therefore, H 2O 2 could be introduced in the cathode regions before switching the polarity of the electrodes and introduction direction of reagents. Furthermore, residual phenanthrene was degraded homogeneously after switching of the electrodes polarity and introduction direction of reagents, and then about 70% phenanthrene could be degraded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.