Abstract

Switching dynamics of flagellar motors of Escherichia coli is commonly observed through markers attached to the flagellar filaments. To eliminate possible complications resulting from the conformational transitions of these filaments and to look at the output of motors more directly, we monitored motor rotation by attaching nanogold spheres to the hooks of cells lacking filaments. We observed exponentially distributed counterclockwise (CCW) and clockwise (CW) intervals and Lorentzian power spectra of the switching time series consistent with models that treat motor switching as a two-state Poisson process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call