Abstract

Low-temperature NMR experiments were performed on mixtures of adenine nucleosides and aspartic acid derivatives in a freonic solvent. By acquiring spectra at temperatures as low as 123 K, the regime of slow hydrogen bond exchange is reached and hydrogen-bonded complexes can be characterized in detail. With 2'-deoxyadenosine lacking a 2'-substituent, N-Boc-protected aspartic acid benzyl ester binds through its carboxylic acid side chain to the Watson-Crick site of the adenine base, forming a strong hydrogen bond with the proton located close to the center between the oxygen donor and adenine N1 nitrogen acceptor. However, in the case of 2'-O-silylated adenine ribofuranosides, noncovalent interactions of the 2'-substituent with protecting groups on the amino acid shift the binding mode toward a Hoogsteen geometry with only a moderately strong hydrogen bond involving adenine N7.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.