Abstract
We consider nonsmooth dynamic systems that are formulated as the unique solutions of ordinary differential equations (ODEs) with right-hand side functions that are finite compositions of analytic functions and absolute-value functions. Various non-Zenoness results are obtained for such solutions: in particular, any absolute-value function in the ODE right-hand side can only switch between its two linear pieces finitely many times on any finite duration, even when a discontinuous control input is included. These results are extended to obtain numerically verifiable necessary conditions for the emergence of “valley-tracing modes”, in which the argument of an absolute-value function is identically zero for a nonzero duration. Such valley-tracing modes can create theoretical and numerical complications during sensitivity analysis or optimization. We show that any valley-tracing mode must begin either at the initial time, or when another absolute-value function switches between its two linear pieces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.