Abstract

NANO MACHINES which are of the capital aims of many advancedresearch projects would contain of complex systems of different devices and actuators that each of them plays a pre-defined role in the overall unit. Nano sensors, nano batteries, nano engines, and nano switches, which contain the most interesting devices for researchers in the related field, are being under consideration for the advance research projects of nano technology. Therefore, in the present project, we have made attempts to reveal the switching behavior of the benzene-C20 fullerene system via a 1,5-sigmatropic shift of the germanium, and silicon-decorated C20 fullerene carbon atoms on the benzene ring. The results showed that in the case of the silicon-decorated C20 fullerene, changingthe system from state A to state Bvia changing the temperature(24.7 kcal mol-1) is much easier than that of germanium-decorated (27.5 kcal mol-1) or normal C20 fullerene (37.8 kcal mol-1). It seems that further studies on this phenomenon, might be beneficial for designing the thermal sensor systems, and energy storage devices

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call