Abstract

Seven-level packed U-cell (PUC7) is known as a cost-effective low-component multilevel inverter. However, PUC7 challenge is the capacitor voltage balancing; so, it conventionally needs an additional voltage control integrated into the current control loop. Because of extra variables, the control problem is further complicated for the grid-connected PUC7. This article proposes an optimized sliding-mode control (OSMC) based on the current dynamical model to track the load current reference and to self-balance the capacitor voltage in both grid-connected and stand-alone operations. By optimizing the OSMC control factor using a visual-based optimization method, PUC7 switching operation is controlled to self-balance the capacitor voltage while any extra voltage controller is needed. An adaptive control law has been also proposed for self-tuning of the PUC7 current reference to track the load and dc source variations. Experimental and simulation results of PUC7 prove the excellent performance of the proposed OSMC in achieving capacitor self-voltage balancing operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.