Abstract

The switching and memory effects in composite films based on conducting polymers [poly(phenylenevinylene), thiophene, and carbazole derivatives] and inorganic nanoparticles (ZnO, Si) are investigated. It is established that the introduction of inorganic nanoparticles (ZnO, Si) exhibiting strong acceptor properties into polymer materials leads to the appearance of memory effects, which manifest themselves in the transition of the polymer from a low-conductivity state to a high-conductivity state. For a number of composites, this transition is accompanied by the formation of a region with a negative differential resistance and a hysteresis in the current-voltage characteristics. It is demonstrated that the observed effects are determined by the mechanism of charge carrier transfer in the composite. In particular, the main mechanism of transport in films based on thiophene derivatives is associated with electrical conduction due to the tunneling of charge carriers between conducting regions embedded in a nonconducting matrix, whereas the dominant mechanism of transport in “polymer-semiconductor nanoparticle” composite films is hopping conduction, which is responsible for the effects observed in these objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.