Abstract
OPHC2 is a thermostable organophosphate (OP) hydrolase in the β-lactamase superfamily. OPs are highly toxic synthetic chemicals with no natural analogs. How did OPHC2 acquire phosphotriesterase (PTE) activity remained unclear. In this study, an OPHC2 analogue, PoOPH was discovered from Pseudomonas oleovorans exhibiting high lactonase and esterase activities and latent PTE activity. Sequence analysis revealed conserved His250 and Ile263 and site-directed mutagenesis at these crucial residues enhanced PTE activity. The best variant PoOPHM2 carrying H250I/I263W mutations displayed 6,962- and 106-fold improvements in catalytic efficiency for methyl-parathion and ethyl-paraoxon degradation, whereas the original lactonase and esterase activities decreased dramatically. A 1.4 × 10(7) -fold of specificity inversion was achieved by only two residue substitutions. Significantly, thermostability of the variants was not compromised. Crystal structure of PoOPHM2 was determined at 2.25 Å resolution and docking studies suggested that the two residues in the binding pocket determine substrate recognition. Lastly, new organophosphorus hydrolases (OPHs) were discovered using simple double mutations. Among them, PpOPHM2 from Pseudomonas putida emerged as a new promising OPH with very high activity (41.0 U mg(-1) ) toward methyl-parathion. Our results offer a first scrutiny to PTE activity evolution of OPHs in β-lactamase superfamily and provide efficient and robust enzymes for OP detoxification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.