Abstract
Switchgrass and other perennial grasses have been promoted as biomass crops for production of renewable fuels. The objective of this study was to evaluate the effect of biomass removal on soil biogeochemical processes. A 3-year field study consisting of three levels of net primary productivity (NPP; low, medium, and high growing season precipitation) and two biomass crops (winter wheat and switchgrass) was conducted near Pendleton, Oregon. Switchgrass increased soil carbon (C)–nitrogen (N) ratio, but the effect varied with net primary productivity (NPP) and soil depth. In situ soil respiration (carbon dioxide; CO2) rate from switchgrass increased with NPP level but switchgrass had greater cumulative flux than wheat in medium and low NPP. Nitrogen mineralization and microbial biomass carbon were significantly greater under switchgrass than under wheat at high and medium NPP. Introduction of switchgrass initiates major changes in soil nutrient dynamics through organic-matter input.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.