Abstract

AbstractConcentrations of bioavailable inorganic nitrogen (N) and phosphorus (P) are simultaneously depleted in the (sub)tropical North Atlantic Ocean, but it remains unclear if phytoplankton growth rates are N limited or N–P co‐limited. Here we present findings from three bottle‐scale experiments using a four‐by‐four matrix of low‐level N and P additions, conducted at one site in the subtropical North Atlantic Ocean. Phytoplankton responses were assessed both in terms of bulk chlorophyll a (Chl a) concentrations and intracellular Chl a of dominant Prochlorococcus and Synechococcus groups. Two matrix experiments suggested that N was independently limiting in situ growth, with no co‐limiting role for P, while the third showed co‐limitation by both N and P in this region. This switch from N limitation to N–P co‐limitation was attributed to an episodic wet deposition event that supplied N, thereby stimulating phytoplankton growth and consuming available P. Such rapid transitions in nutrient limitation in response to environmental forcing might be common in oceanic systems with multiple depleted nutrients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.