Abstract

This paper presents a novel scheme for visual servoing of a nonholonomic mobile robot equipped with a monocular camera in consideration of field-of-view (FOV) constraints. In order to loosen the FOV constraints, the system states are expressed by the homography between the current frame and the key frame so that the target is not necessarily to be always visible in the control process. A switched visual controller is designed to deal with the nonholonomic constraints. Moreover, an iteration strategy is used to eliminate errors caused by the parameter uncertainty. The stablity and robustness of the proposed scheme are guaranteed by theoretical analysis. Compared to conventional schemes, the proposed approach has the following advantages: 1) a better path in Cartesian space can be achieved owing to the loosening of FOV constraints; 2) the iteration strategy ensures the robustness to parameter uncertainty; 3) when used in landmark-based navigation, it needs much sparser and simpler landmarks than those localization-based approaches need. Simulation results demonstrate the effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call