Abstract

Fault detection in robotic manipulators is necessary for their monitoring and represents an effective support to use them as independent systems. This present study investigates an enhanced method for representation of the faultless system behavior in a robot manipulator based on a multi-layer perceptron (MLP) neural network learning model which produces the same behavior as the real dynamic manipulator. The study was based on generation of residue by contrasting the actual output of the manipulator with those of the neural network; Then, a time delay control (TDC) is applied to compensate the fault, in which a typical sliding mode command is used to delete the time delay estimate produced by the belated signal in order to obtain strong performances. The results of the simulations performed on a model of the SCARA arm manipulator, showed a good trajectory tracking and fast convergence speed in the presence of faults on the sensors. In addition, the command is completely model independent, for both TDC and MLP neural network, which represents a major advantage of the proposed command.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.