Abstract

The battery pack performance and expected lifespan are crucial in electric vehicle applications. Balancing the charge on a battery pack connected in series and parallel is crucial due to manufacturing discrepancies and distinct performance of each cell in a standard battery pack. In this paper, a switched-resistor passive balancing-based method is proposed for balancing cells in a battery management system (BMS). The value of the available voltage at the battery cell terminals is balanced using resistors in an electrical circuit, and the excess voltage is eliminated. The cell balancing outcome demonstrates that the electrical circuit can maintain an even voltage across each cell. The procedure of balancing involves individually adjusting each cell’s level of charge. Passive balancing releases energy as heat by draining charge from cells that have too much charge. A passive cell balancer is a cost-effective solution and easy to install, but due to thermal loss from a resistor, it has a low energy efficiency for cell balancing and necessitates a lengthy balancing process. This passive cell balancer is an effective and reliable method for low-power devices and portable applications such as electrical vehicles. The power limits during charging and discharging are estimated using the bisection method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.