Abstract

A novel and general strategy of split-type immunoassay is developed based on redox chemical reaction modulated photoelectrochemistry of carbon dots (CDs). Specifically, the photocurrent of the CDs sensitized titanium dioxide nanoparticles (TiO2 NPs) modified fluorine doped indium tin oxide (FTO) (that is the FTO/TiO2/CDs) electrode was inhibited obviously by KMnO4 due to the oxidation of surface hydroxyl groups of CDs to electron accepting carbonyls. While the inhibited photocurrent of the KMnO4 treated FTO/TiO2/CDs electrode can be restored by ascorbic acid (AA) because of the regeneration of electron donating hydroxyls to promote electron-hole separation. Take carcinoembryonic antigen (CEA) as a model analyte and alkaline phosphate (ALP) as a catalytic label tracer to hydrolyze ascorbic acid 2-phosphate (AAP) for producing AA, which greatly stimulated the photocurrent of the transducer of KMnO4 treated FTO/TiO2/CDs photoelectrode for signal output. This redox chemical reaction modulated PEC strategy enabled the separation of the immunoreaction from the photoelectrode (that is, a split-type PEC detection), eliminating potential damage of biomolecules during the PEC detection processes and leading to enhanced throughput detection as compared to conventional PEC configurations. A low detection limit of 7.0 fg/mL was achieved for CEA. This convenient, split-type PEC immunoassay with high throughput may be easily extended to other bioaffinity assays for versatile targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call