Abstract

In this work, we present a switched relaying framework for multiple-input multiple-output (MIMO) relay systems where a source node may transmit directly to a destination node or aided by relays. We also investigate relay selection techniques for the proposed switched relaying framework, whose relays are equipped with buffers. In particular, we develop a novel relay selection protocol based on switching and the selection of the best link, denoted as Switched Max-Link. We then propose the Maximum Minimum Distance (MMD) relay selection criterion for MIMO systems, which is based on the optimal Maximum Likelihood (ML) principle and can provide significant performance gains over other criteria, along with algorithms that are incorporated into the proposed Switched Max-Link protocol. An analysis of the proposed Switched Max-Link protocol and the MMD relay selection criterion in terms of computational cost, pairwise error probability, sum-rate and average delay is carried out. Simulations show that Switched Max-Link using the MMD criterion outperforms previous works in terms of sum-rate, pairwise error probability, average delay and bit error rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call