Abstract

Humicola lanuginosa lipase was used for enantioselective hydrolyses of a series of homologous 2-phenoxyalkanoic acid ethyl esters. The enantioselectivity ( E-value) of the enzyme changed from an ( R)-enantiomer preference for the smallest substrate, 2-phenoxypropanoic acid ester, to an ( S)-enantiomer preference for the homologous esters with longer acyl moieties. The E-values span the range from E=13 ( R) to E=56 ( S). A molecular modeling study identified two different substrate-binding modes for each enantiomer. We found that the enantiomers favored different modes. This discovery provided a model that offered a rational explanation for the observed switch in enantioselectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.