Abstract
All autonomous electrically powered devices require a continuous power supply from batteries. Increasing the discharge performance is the top priority in the Lithium-Ion (Li-Ion) battery field and pulsed discharge is proving numerous advantages. In this paper, the maximum efficiency of pulsed discharge method on a constant load while the cells are alternately switched with dead-time is thoroughly studied. Therefore, a novel Li-Ion charge/discharge and measurement device (SWD) using fast switching MOSFET was designed and fabricated. The device can alternately switch up to 8.3 kHz two Li-Ion 18650 batteries, generating continuous power to the programmable load and monitor the parameters that impact the capacity of the battery. An EIS (Electrochemical Impedance Spectroscopy) analysis is employed to evaluate the impedance and the behavior of the cells at frequencies up to 10 kHz. Experimental results reveal that a maximum discharge time is determined when two cells are switched at a frequency of 5.8 kHz. As a consequence, the total capacity of two switched batteries in a single discharge cycle is increased by 16.6%. Pulsed discharge efficiency is visible starting from 70% State of Charge (SOC) and is correlated with the rest time, reduced heat loss and inductance, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.