Abstract
In this letter, we develop switched conditional PDF-based split vector quantization (SCSVQ) method using the recently proposed conditional PDF-based split vector quantizer (CSVQ). The use of CSVQ allows us to alleviate the coding loss by exploiting the correlation between subvectors, in each switching region. Using the Gaussian mixture model (GMM)-based parametric framework, we also address the rate-distortion (R/D) performance optimality of the proposed SCSVQ method by allocating the bits optimally among the switching regions. For the wideband speech line spectrum frequency (LSF) parameter quantization, it is shown that the optimum parametric SCSVQ method provides nearly 2 bits/vector advantage over the recently proposed nonparametric switched split vector quantization (SSVQ) method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.