Abstract

Abstract Multilevel inverters (MLIs) have formed a new wave of interest in research and industry. Switched capacitor-based multilevel inverters are used to avoid the need for multiple separated DC sources compared to cascaded MLIs. However, the inclusion of several capacitors creates problems such as high inrush current, voltage imbalance. To avoid these drawbacks, this paper proposes an isolation-based scheme by using a flyback converter in the switched capacitor multilevel inverter. Further, the overall topology provides step-up AC voltage across the load from a single DC source with fewer power switches. To generate a step-up five-level voltage across the load, switched capacitor-based multilevel inverter needs six power switches and only one capacitor. To get the appropriate switching operation to generate the NL-levels, phase disposition pulse width modulation (PD-PWM) has been developed. The extended nine-level S 2 -MLI is also discussed in this paper under different conditions as change in input source voltage and dynamic load change. Moreover, to prove the superior performance of switched-capacitor single DC source multilevel inverter (S2-MLI), comparative analysis with existing single DC source MLI has been performed. The effectiveness and feasibility of the proposed topology are tested with varieties of loads by simulation using Matlab/Simulink. To validate the simulation results, hardware implementation has been done of five-level S2-MLI considering resistive and motor load by using DSpace 1103 controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.