Abstract

A multifunctional switchable terahertz (THz) absorber based on graphene and vanadium dioxide (VO2) is presented. The properties of the absorber are studied theoretically by the finite-difference time-domain (FDTD) method. The results illustrate that the structure switches between the single-broadband or double-broadband absorption depending on the temperature of VO2. Moreover, the amplitude of the absorptivity can be adjusted by changing the Fermi energy level (EF) of graphene or the conductivity of VO2 separately. Via impedance matching theory, the physical mechanism of the absorber is researched. Furthermore, the effects of incidence angle on absorption have also been studied. It is found that the absorber is insensitive to the polarization of electromagnetic waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.