Abstract
Recent progress in topological mechanics have revealed a family of Maxwell lattices that exhibit topologically protected floppy edge modes. These modes lead to a strongly asymmetric elastic wave response. In this paper, we show how topological Maxwell lattices can be used to realize non-reciprocal transmission of elastic waves. Our design leverages the asymmetry associated with the availability of topological floppy edge modes and the geometric nonlinearity built in the mechanical systems response to achieve the desired non-reciprocal behavior, which can be further turned into strongly one-way phonon transport via the addition of on-site pinning potentials. Moreover, we show that the non-reciprocal wave transmission can be switched on and off via topological phase transitions, paving the way to the design of cellular metamaterials that can serve as tunable topologically protected phonon diodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.