Abstract

Transfer printing based on switchable adhesive is essential for developing unconventional systems, including flexible electronics, stretchable electronics, and micro light-emitting diode (LED) displays. Here we report a design of switchable dry adhesive based on shape memory polymer (SMP) with hemispherical indenters, which offers a continuously tunable and reversible adhesion through the combination of the preloading effect and the thermal actuation of SMP. Experimental and numerical studies reveal the fundamental aspects of design, fabrication, and operation of the switchable dry adhesive. Demonstrations of this adhesive concept in transfer printing of flat objects (e.g., silicon wafers), three-dimensional (3D) objects (e.g., stainless steel balls), and rough objects (e.g., frosted glasses) in two-dimensional (2D) or 3D layouts illustrate its unusual manipulation capabilities in heterogeneous material integration applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call