Abstract

In this work, a switchable deep eutectic solvent (SDES) based on fatty acid and polyetheramine ion pair was prepared for liquid-phase microextraction (LPME) of phenoxyacetic acid herbicides in drinking water, beverage and honey matrices. The as-synthesized SDES equipped with an interesting characteristic of fast and reversible polarity switching, achieving homogeneous extraction and rapid bi-phase separation simultaneously. Several key parameters affecting the extraction performance were investigated comprehensively by Box-Behnken design. Under the optimal conditions, the method exhibited excellent linearity (15–4000 μg L−1), low detection limits (3–5 μg L−1), desirable precision (RSD < 8.1 %), and satisfactory recovery (72.6–98.7 %). More importantly, the introduction of SDES can simplify the pre-treatment procedure, shorten extraction time (4 min), and avoid the usage of traditional organic solvent during the whole extraction process. In addition, the switching mechanism of SDES was characterized by FT-IR and 1H NMR, and the forming mechanism of SDES was investigated using density-functional theory. The green of the method was estimated using the analytical ecological scale, the analytical green calculator, and the green analytical procedure index. The cytotoxicity of SDES was investigated and the result displayed that toxicity of the SDES was very low with the EC50 > 500 mg/L. Therefore, the proposed method was green and efficient and revealed considerable application prospects for the extraction of trace analytes from complex materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call