Abstract

The control over protein adsorption is of major importance for a variety of biomedical applications from diagnostic assays to tissue engineered medical devices. Most research has focused on the prevention of non-specific protein adsorption on solid substrates. Examples for surface modifications that significantly reduce protein adsorption include the grafting of polyacrylamide, poly (ethylene oxide) and polysaccharides. Here, we describe a method for creating surfaces that prevent non-specific protein adsorption, which in addition can be transformed into surfaces showing high protein adsorption on demand. Doped silicon wafers were used as substrate materials. Coatings were constructed by deposition of allylamine plasma polymer. The subsequent grafting of poly (ethylene oxide) aldehyde resulted in a surface with low protein fouling character. When the conductive silicon wafer was used as an electrode, the resulting field induced the adsorption of selected proteins. Surface modifications were analysed by X-ray photoelectron spectroscopy and atomic force microscopy. The controlled adsorption of proteins was investigated using a colorimetric assay to test enzymatic activity. The method described here represents an effective tool for the control over protein adsorption and is expected to find use in a variety of biomedical applications particularly in the area of biochips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.