Abstract

The need for reliable renewable energy storage devices has become increasingly important. However, the performance of current electrochemical energy storage devices is limited by either low energy or power densities and short lifespans. Herein, we report the synthesis and characterization of multilayer Ti4N3Tx MXene in various aqueous electrolytes. We demonstrate that Ti4N3Tx can be electrochemically activated through continuous cation intercalation over a 10 day period using cyclic voltammetry. A wide operating window of 2 V is maintained throughout activation. After activation, capacitance at 2 mV s-1 increases by 300%, 140%, and 500% in 1 M H2SO4, 1 M MgSO4, and 1 M KOH, respectively, while maintaining ∼600 F g-1 at 2 mV s-1 after 50000 cycles in 1 M H2SO4. This activation process is possibly attributed to the unique morphology of the multilayered material, allowing cation intercalation to increase access to redox-active sites between layers. This work adds to the growing repository of electrochemically stable MXenes reported for aqueous energy storage applications. These findings offer a reliable option for reliable energy storage devices with potential applications in large-scale grid storage and electric vehicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.