Abstract

The nucleophile-induced domino reaction is a featured reactivity mode of thioisatin, but the C2/C3 positional selectivity towards a nucleophile has not been understood in-depth. In this work, a domino reaction of thioisatin with bromoacetophenone and tryptamine hydrochloride to produce a benzothiophene-fused eight-membered N-heterocycle was described, showing that the Brønsted acid-base form of the amine partner was crucial for the selectivity, because using tryptamine instead of tryptamine hydrochloride gave a different product. Control experiments and density functional calculations revealed that the domino reaction using tryptamine or tryptamine hydrochloride was triggered by a condensation reaction at the C2 or C3 position of thioisatin, respectively. A delicate balance between local electrophilicity and polarization effect may be responsible for the observed selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.