Abstract

Biphotonic holographic recording through the competition of linearly polarized laser beams with wavelengths of 532 nm and 632.8 nm was investigated in an azobenzene liquid crystal film. With the irradiation of 532 nm excitation light as a switch, holographic gratings were able to be turned on and off. It was found that diffraction behaviors of the recorded gratings were strongly dependent on not only the polarization angle between the recording light and excitation light, but also the sample temperature. Formation processes and diffraction properties of biphotonic holographic gratings were discussed based on the photoisomerization of azobenzene groups. Besides, biphotonic polarization holographic recording was also achieved by means of adjusting the polarization states of recording light and the diffraction characteristics were analyzed in terms of Jones matrices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call