Abstract

Recent proposals of deep learning-based beamformers for ultrasound imaging (US) have attracted significant attention as computational efficient alternatives to adaptive and compressive beamformers. Moreover, deep beamformers are versatile in that image post-processing algorithms can be readily combined. Unfortunately, with the existing technology, a large number of beamformers need to be trained and stored for different probes, organs, depth ranges, operating frequency, and desired target 'styles', demanding significant resources such as training data, etc. To address this problem, here we propose a switchable and tunable deep beamformer that can switch between various types of outputs such as DAS, MVBF, DMAS, GCF, etc., and also adjust noise removal levels at the inference phase, by using a simple switch or tunable nozzle. This novel mechanism is implemented through Adaptive Instance Normalization (AdaIN) layers, so that distinct outputs can be generated using a single generator by merely changing the AdaIN codes. Experimental results using B-mode focused ultrasound confirm the flexibility and efficacy of the proposed method for various applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.