Abstract

All inorganic halide perovskite nanocrystals (NCs) are considered as fascinating materials for a wide range of optoelectronic applications encompassing photovoltaics, lasing, sensing, and photocatalysis due to their outstanding optoelectronic properties. Herein, it is demonstrated that the photoelectrochemical behavior of CsPbBr3 NC films can be tailored through engineering the selective contacts and accepting species in the electrolyte. This concept has been successfully applied to the photoelectrochemical oxidation of benzyl alcohol (BzOH) to benzyl aldehyde (BzCHO) and the reverse photoelectrochemical reduction of BzCHO to BzOH, demonstrating that CsPbBr3 NCs activate both reactions with photocurrents up to 40 μA cm−2 toward BzCHO production and 5 μA cm−2 for the reverse reaction at 0.15 V versus normal hydrogen electrode. The obtained results highlight the huge potential and versatility of halide perovskite NCs for photoelectrocatalytic applications, validating the implementation of these materials for a wide range of solar‐driven complex organic transformations, and emphasizing the urgent need for stabilization strategies to move beyond the proof‐of‐concept stage to relevant technological developments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.