Abstract

Primary progenitor cell types adequately isolated from fetal tissue samples present considerable therapeutic potential for a wide range of applications within allogeneic musculoskeletal regenerative medicine. Progenitor cells are inherently differentiated and extremely stable in standard bioprocessing conditions and can be culture-expanded to establish extensive and robust cryopreserved cell banks. Stringent processing conditions and exhaustive traceability are prerequisites for establishing a cell source admissible for further cGMP biobanking and clinical-grade production lot manufacture. Transplantation programs are ideal platforms for the establishment of primary progenitor cell sources to be used for manufacture of cell therapies or cell-based products. Well-defined and regulated procurement and processing of fetal biopsies after voluntary pregnancy interruptions ensure traceability and safety of progeny materials and therapeutic products derived therefrom. We describe herein the workflows and specifications devised under the Swiss Fetal Progenitor Cell Transplantation Program in order to traceably isolate primary progenitor cell types in vitro and to constitute Parental Cell Banks fit for subsequent industrial-scale cGMP processing. When properly devised, derived, and maintained, such cell sources established after a single organ donation can furnish sufficient progeny materials for years of development in translational musculoskeletal regenerative medicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call