Abstract
Knowledge gaps about how the ocean melts Antarctica's ice shelves, borne from a lack of observations, lead to large uncertainties in sea level predictions. Using high-resolution maps of the underside of Dotson Ice Shelf, West Antarctica, we reveal the imprint that ice shelf basal melting leaves on the ice. Convection and intermittent warm water intrusions form widespread terraced features through slow melting in quiescent areas, while shear-driven turbulence rapidly melts smooth, eroded topographies in outflow areas, as well as enigmatic teardrop-shaped indentations that result from boundary-layer flow rotation. Full-thickness ice fractures, with bases modified by basal melting and convective processes, are observed throughout the area. This new wealth of processes, all active under a single ice shelf, must be considered to accurately predict future Antarctic ice shelf melt.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.