Abstract

Jet impingement cooling has been extensively investigated due to its significant applications on the airfoil leading edge region; however, most of which are about normal jet impingement. The systematic research on swirl jet impinging cooling on leading edge is relatively rare. This study comprehensively investigated the heat transfer distribution of swirl jet impingement with one row of tangential jets. The location of the cross-over jets is offset from the centerline toward either suction or pressure side. Five jet Reynolds numbers varying from 10,000 to 80,000 are tested to reach real engine cooling condition. Jet plates with jet-to-jet spacing (s/d = 2, 4, and 8) and the ratio of surface diameter-to-jet diameter (D/d = 4, 6.6, and 13.3) are tested. We conducted the experiments with a test matrix of 45 cases. The optimum geometric parameters of the jet plate are revealed. Results indicate that for a given Reynolds number, the jet plate configuration with D/d = 4 and s/d = 2 provides the highest Nusselt number profile than the other jet plate configurations, while the jet plate configuration with D/d = 13.3 and s/d = 8 provides the lowest Nusselt number profiles. The best heat transfer region shifts by varying the jet plate configuration depending on the strength of swirl flow. Additionally, correlation of tangential jet impingement has been developed to predict the area-averaged Nusselt number, which is useful for airfoil leading edge cooling design and heat transfer analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.