Abstract

Simultaneous wireless information and power transfer (SWIPT) in radio-frequency (RF) bands enables flexible deployment of battery-powered relays for extending communication coverage. Relays receive downlink RF signals emitted by a source for information decoding and energy harvesting, while the harvested energy is consumed for both information decoding and information forwarding to a destination. An energy harvesting based selective-decode-and-forward (EH-SDF) protocol is proposed, where only the relays having information correctly decoded are activated for information forwarding, while others harvest and store energy for the future use. By considering the channel aging effect, we propose a joint relay selection, power allocation, transmit beamforming and signal splitting design in order to maximise the end-to-end (e2e) throughput of this EH-SDF aided cooperative communication system. Two scenarios with/without direct link between the source and the destination are studied, respectively. The original formulated non-convex optimisation problems with coupled variables are decoupled into three subproblems which are solved by an iterative optimisation algorithm. Numerical results demonstrate that our design with the EH-SDF protocol achieves a higher e2e throughput than the traditional decode-and-forward (DF) counterpart. Moreover, the impact of the channel aging effect on the e2e throughput is also evaluated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call