Abstract

Multistep chemical reactions are increasingly seen as important in a growing number of complex biotransformations. Covalently attached prosthetic groups or swinging arms, and their associated protein domains, are essential to the mechanisms of active-site coupling and substrate channeling in a number of the multifunctional enzyme systems responsible. The protein domains, for which the posttranslational machinery in the cell is highly specific, are crucially important, contributing to the processes of molecular recognition that define and protect the substrates and the catalytic intermediates. The domains have novel folds and move by virtue of conformationally flexible linker regions that tether them to other components of their respective multienzyme complexes. Structural and mechanistic imperatives are becoming apparent as the assembly pathways and the coupling of multistep reactions catalyzed by these dauntingly complex molecular machines are unraveled.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.