Abstract

Refolding of urea- or alkali-unfolded swine pepsinogen occurs by rapid formation of partially folded intermediates (Is) which are slowly converted into the native protein (N). This slow reaction involves isomerization of proline residues in the protein to the configurations occurring in N. Kinetic studies on changes in absorbance or circular dichroism indicate Is to be close to the native structure, which fluorescence and hydrogen exchange measurements show Is to be much more open to solvent than N. Fluorescent probe binding suggests that Is has a more hydrophobic surface than N. These contrasting results are interpreted to show that the presence of wrong proline residues does not greatly inhibit the overall folding of pepsinogen but prevents close packing of structural elements into the highly cooperative, stable, native form. Is may be very similar to N in average structure, but is a much more fluctuating species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.