Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections often characterized by robust neutrophilic infiltration. Neutrophils provide the first line of defense against P. aeruginosa. Aside from their defense conferred by phagocytic activity, neutrophils also release neutrophil extracellular traps (NETs) to immobilize bacteria. Although NET formation is an important antimicrobial process, the details of its mechanism are largely unknown. The identity of the main components of P. aeruginosa responsible for triggering NET formation is unclear. In this study, our focus was to identify the main bacterial factors mediating NET formation and to gain insight into the underlying mechanism. We found that P. aeruginosa in its exponential growth phase promoted strong NET formation in human neutrophils while its NET-inducing ability dramatically decreased at later stages of bacterial growth. We identified the flagellum as the primary component of P. aeruginosa responsible for inducing NET extrusion as flagellum-deficient bacteria remained seriously impaired in triggering NET formation. Purified P. aeruginosa flagellin, the monomeric component of the flagellum, does not stimulate NET formation in human neutrophils. P. aeruginosa-induced NET formation is independent of the flagellum-sensing receptors TLR5 and NLRC4 in both human and mouse neutrophils. Interestingly, we found that flagellar motility, not flagellum binding to neutrophils per se, mediates NET release induced by flagellated bacteria. Immotile, flagellar motor-deficient bacterial strains producing paralyzed flagella did not induce NET formation. Forced contact between immotile P. aeruginosa and neutrophils restored their NET-inducing ability. Both the motAB and motCD genetic loci encoding flagellar motor genes contribute to maximal NET release; however the motCD genes play a more important role. Phagocytosis of P. aeruginosa and superoxide production by neutrophils were also largely dependent upon a functional flagellum. Taken together, the flagellum is herein presented for the first time as the main organelle of planktonic bacteria responsible for mediating NET release. Furthermore, flagellar motility, rather than binding of the flagellum to flagellum-sensing receptors on host cells, is required for P. aeruginosa to induce NET release.
Highlights
Pseudomonas aeruginosa is a ubiquitous opportunistic Gram-negative pathogen found in the environment
The detailed mechanism of neutrophil extracellular traps (NETs) release induced by bacteria remains unclear
Our data show that the flagellum, the organelle that provides swimming motility to P. aeruginosa, is the main factor required to induce NET release
Summary
Pseudomonas aeruginosa is a ubiquitous opportunistic Gram-negative pathogen found in the environment. P. aeruginosa rarely infects healthy individuals and mainly causes lung infections in patients with compromised immune defenses [cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), HIV, non-CF bronchiectasis and hospital-acquired pneumonia] [1,2,3,4,5,6]. P. aeruginosa colonizes up to 80% of CF patients, 4–15% of COPD patients, 8–25% of HIV patients with pneumonia, 28% of non-CF bronchiectasis patients and 18–20% of patients with hospital-acquired pneumonia [4, 7,8,9]. Neutropenia, caused by chemotherapy, HIV infection or autoimmune disorders, predisposes patients to P. aeruginosa pneumonia [13,14,15]. An adequate immune response to P. aeruginosa requires the full spectrum of neutrophilic defenses
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.