Abstract

Hydropower plants commonly impede the downstream migration of Atlantic salmon (Salmo salar) kelts. Thus, understanding the effects of hydraulic conditions on kelt behaviour and passage performance at dams is crucial for developing effective mitigation measures. In this study, we investigated the influence of hydraulic conditions on kelt passage performance and swimming behaviour at a Norwegian hydropower plant. We combined biological data from 48 kelts collected via acoustic telemetry with hydraulic data modelled using computational fluid dynamics. We assessed kelt passage performance using metrics such as time-to-pass, total number of detections, and total number of detections per day. Additionally, we analysed swimming depths and speeds in relation to the hydraulic conditions created by different dam operating conditions. We found that the dam operation schedule impacted the kelts' ability to find a route past the dam. Though kelts could have passed the dam throughout the study period via a submerged pipe at the dam (which had seemingly sufficient discharge for the kelts to find), 98 % of the kelts instead waited for a spill gate to open partway through the study period. The swimming depth analysis indicated diel variation, with kelts swimming nearer to the water surface during the night. We found that swimming speed increased with increasing kelt body length, particularly under high turbulence kinetic energy and during the day. Furthermore, kelts swam faster as water velocity increased, but slowed down again as turbulence intensity increased. Our findings reveal the effects of hydraulic conditions and dam operations on the migration behaviour of Atlantic salmon kelts. This provides valuable insights for developing strategies to optimise dam operations and improve fish passage performance, including the need to spill enough water to increase passage success and will contribute to sustainable management of Atlantic salmon populations in regulated rivers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call