Abstract

The bright gamma-ray burst GRB050525a has been detected with the Swift observatory, providing unique multiwavelength coverage from the very earliest phases of the burst. The X-ray and optical/UV afterglow decay light curves both exhibit a steeper slope ~0.15 days after the burst, indicative of a jet break. This jet break time combined with the total gamma-ray energy of the burst constrains the opening angle of the jet to be 3.2 degrees. We derive an empirical `time-lag' redshift from the BAT data of z_hat = 0.69 +/- 0.02, in good agreement with the spectroscopic redshift of 0.61. Prior to the jet break, the X-ray data can be modelled by a simple power law with index alpha = -1.2. However after 300 s the X-ray flux brightens by about 30% compared to the power-law fit. The optical/UV data have a more complex decay, with evidence of a rapidly falling reverse shock component that dominates in the first minute or so, giving way to a flatter forward shock component at later times. The multiwavelength X-ray/UV/Optical spectrum of the afterglow shows evidence for migration of the electron cooling frequency through the optical range within 25000 s. The measured temporal decay and spectral indices in the X-ray and optical/UV regimes compare favourably with the standard fireball model for Gamma-ray bursts assuming expansion into a constant density interstellar medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call