Abstract

The neutron star X-ray binary (NSXRB) Cygnus X-2 was observed by the Swift satellite 51 times over a 4 month period in 2008 with the XRT, UVOT, and BAT instruments. During this campaign, we observed Cyg X-2 in all three branches of the Z track (horizontal, normal, and flaring branches). We find that the NUV emission is uncorrelated with the soft X-ray flux detected with the XRT, and is anticorrelated with the BAT X-ray flux and the hard X-ray color. The observed anticorrelation is inconsistent with simple models of reprocessing as the source of the NUV emission. The anticorrelation may be a consequence of the high inclination angle of Cyg X-2, where NUV emission is preferentially scattered by a corona that expands as the disk is radiatively heated. Alternatively, if the accretion disk thickens as Cyg X-2 goes down the normal branch toward the flaring branch, this may be able to explain the observed anticorrelation. In these models the NUV emission may not be a good proxy for $\dot m$ in the system. We also discuss the implications of using Swift/XRT to perform spectral modeling of the continuum emission of NSXRBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.