Abstract

Polymer composites with different concentrations of organometallics (ferric oxalate) dispersed PMMA were prepared. PMMA was synthesized by solution polymerization technique. These films were irradiated with 120 MeV Ni 10+ ions in the fluence range 10 11–5 × 10 12 ions/cm 2. The radiation induced modifications in dielectric properties, microhardness, structural changes and surface morphology of polymer composite films have been investigated at different concentrations of filler and ion-fluences. It was observed that electrical conductivity and hardness of the films increase with the concentration of the filler and also with the fluence. The dielectric constant ( ɛ) obeys the Universal law given by ɛαf n −1. The dielectric constant/loss is observed to change significantly due to irradiation. This suggests that ion beam irradiation promotes the metal to polymer bonding and convert polymeric structure into hydrogen depleted carbon network. This makes the composites more conductive and harder. Surface morphology of the films has been studied using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The average surface roughness is observed to increase after irradiation as revealed by AFM studies. The SEM images show the blisters type of phenomenon on the surface due to ion beam irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.