Abstract

Typically, time-dependent thermodynamic protocols need to run asymptotically slowly in order to avoid dissipative losses. By adapting ideas from counter-diabatic driving and Floquet engineering to open systems, we develop fast-forward protocols for swiftly thermalizing a system oscillator locally coupled to an optical phonon bath. These protocols control the system frequency and the system-bath coupling to induce a resonant state exchange between the system and the bath. We apply the fast-forward protocols to realize a fast approximate Otto engine operating at high power near the Carnot Efficiency. Our results suggest design principles for swift cooling protocols in coupled many-body systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.