Abstract

Stimulus-frequency otoacoustic emissions (SFOAEs) are reflection-source emissions, and are the least familiar and perhaps most underutilized otoacoustic emission. Here, normative SFOAE data are presented from a large group of 48 young adults at probe levels from 20 to 60 dB sound pressure level (SPL) across a four-octave frequency range to characterize the typical SFOAE and describe recent methodological advances that have made its measurement more efficient. In young-adult ears, SFOAE levels peaked in the low-to-mid frequencies at mean levels of ∼6-7 dB SPL while signal-to-noise ranged from 23 to 34 dB SPL and test-retest reliability was ±4 dB for 90% of the SFOAE data. On average, females had ∼2.5 dB higher SFOAE levels than males. SFOAE input/output functions showed near linear growth at low levels and a compression threshold averaging 35 dB SPL across frequency. SFOAE phase accumulated ∼32-36 cycles across four octaves on average, and showed level effects when converted to group delay: low-level probes produced longer SFOAE delays. A "break" in the normalized SFOAE delay was observed at 1.1 kHz on average, elucidating the location of the putative apical-basal transition. Technical innovations such as the concurrent sweeping of multiple frequency segments, post hoc suppressor decontamination, and a post hoc artifact-rejection technique were tested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.