Abstract

As modern aerospace and automotive designs continually strive for higher performance, and thus rely on advanced composite structures where adhesive bonding is a preferred method of joining, the need for a robust quantitative nondestructive bond strength measurement method has increased. As such, advanced nondestructive evaluation methods have been researched for increased sensitivity to weak interfacial bonding and ultimately to detect "kissing" bonds. In this work, a phase-based method for interrogating bonded joints and detecting weak adhesion is developed by using swept-frequency phase measurements of ultrasonic waves reflected from an adhesive joint and modeling adhesive interfaces as a distributed spring system. The method's sensitivity to bond strength is explored by ultrasonic phase evaluation of tri-layer joints with bond quality varied by controlling ultraviolet light exposure and extracting interfacial stiffness constants of the bonds. Mechanical tensile tests found each joint failed adhesively, allowing a linear correlation to be drawn between interfacial stiffness and tensile strength, consistent with previous theoretical research. The ultrasonic phase measurement method identifies intermediate bond strengths, rather than simply detecting good or bad bonds. This technique has the potential for the verification of bond quality in lightweight aerospace and automotive designs utilizing advanced composite structures with adhesive attachments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call